Scientific Article: Developing a Diabetes Prediction System with Python, Spring Boot, and Angular

by Starling Diaz

Scientific Article: Developing a Diabetes Prediction System with Python, Spring Boot, and Angular

Abstract

This article presents the development of a comprehensive diabetes prediction system using a microservices architecture. The backend leverages Python for machine learning, Spring Boot for data processing, and a modern Angular-based user interface styled with Tailwind CSS. This system exemplifies a robust solution for diabetes prediction by integrating technologies across multiple platforms and creating an end-to-end workflow.


Introduction

Diabetes is a global health concern that demands effective predictive systems to enable early intervention. This project demonstrates the creation of a diabetes prediction system leveraging machine learning and modern web technologies. The system includes:

  1. A Python-based API for predictive modeling.
  2. A Spring Boot API for data processing.
  3. An Angular and Tailwind CSS frontend for user interaction.

The following sections document the development process, providing code snippets and architectural insights.


Technologies Used

Python (Machine Learning Backend)

  • Flask: RESTful API for the machine learning model.
  • scikit-learn: Model training and evaluation.
  • joblib: Model serialization.

Spring Boot (Intermediate Layer)

  • Processes prediction requests and integrates with the Python API.

Angular (Frontend)

  • Provides a user-friendly interface for submitting health metrics and viewing predictions.
  • Styled with Tailwind CSS.

Development Steps

Step 1: Machine Learning API with Python

The Python backend trains a machine learning model using the cdc_diabetes_health_indicators dataset. The API exposes a /predict endpoint for predictions.

Code for Training the Model:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
import joblib

# Load dataset
cdc_data = pd.read_csv('data/diabetes.csv')
X = cdc_data.drop('Outcome', axis=1)
y = cdc_data['Outcome']

# Train model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Save model
joblib.dump(model, 'models/diabetes_model.pkl')

Flask API Code:

from flask import Flask, request, jsonify
import joblib
import pandas as pd

app = Flask(__name__)
model = joblib.load('models/diabetes_model.pkl')

@app.route('/predict', methods=['POST'])
def predict():
    data = request.get_json()
    input_df = pd.DataFrame([data])
    prediction = model.predict(input_df)
    return jsonify({"prediction": int(prediction[0])})

if __name__ == '__main__':
    app.run(debug=True)

Step 2: Spring Boot API

The Spring Boot backend integrates with the Python API, exposing a simplified endpoint for the Angular frontend.

Spring Boot Service Class:

@Service
public class PredictionService {
    private final RestTemplate restTemplate;
    
    public PredictionService(RestTemplate restTemplate) {
        this.restTemplate = restTemplate;
    }

    public PredictionResponse getPrediction(PredictionRequest request) {
        return restTemplate.postForObject("http://localhost:5000/predict", request, PredictionResponse.class);
    }
}

Spring Boot Controller:

@RestController
@RequestMapping("/api/v1/predictions")
public class PredictionController {
    private final PredictionService predictionService;

    @PostMapping
    public ResponseEntity<PredictionResponse> predict(@RequestBody PredictionRequest request) {
        return ResponseEntity.ok(predictionService.getPrediction(request));
    }
}

Step 3: Angular Frontend with Tailwind CSS

The Angular frontend collects user input, sends it to the Spring Boot API, and displays the prediction results.

Service for API Calls:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';

export interface PredictionRequest {
  HighBP: number;
  HighChol: number;
  CholCheck: number;
  BMI: number;
  Smoker: number;
  Stroke: number;
  HeartDiseaseorAttack: number;
  PhysActivity: number;
  Fruits: number;
  Veggies: number;
  HvyAlcoholConsump: number;
  AnyHealthcare: number;
  NoDocbcCost: number;
  GenHlth: number;
  MentHlth: number;
  PhysHlth: number;
  DiffWalk: number;
  Sex: number;
  Age: number;
  Education: number;
  Income: number;
}

export interface PredictionResponse {
  classification: string;
  interpretation: string;
  prediction: number;
}

@Injectable({ providedIn: 'root' })
export class PredictionService {
  private apiUrl = 'http://localhost:8080/api/v1/predictions';

  constructor(private http: HttpClient) {}

  predict(data: PredictionRequest): Observable<PredictionResponse> {
    return this.http.post<PredictionResponse>(this.apiUrl, data);
  }
}

Form Component:

@Component({
  selector: 'app-prediction-form',
  templateUrl: './prediction-form.component.html',
  styleUrls: ['./prediction-form.component.css'],
  animations: [
    trigger('fadeInOut', [
      transition(':enter', [
        style({ opacity: 0 }),
        animate('300ms', style({ opacity: 1 }))
      ]),
      transition(':leave', [
        animate('300ms', style({ opacity: 0 }))
      ])
    ]),
    trigger('slideIn', [
      transition(':enter', [
        style({ transform: 'translateY(50px)', opacity: 0 }),
        animate('500ms cubic-bezier(0.35, 0, 0.25, 1)',
          style({ transform: 'translateY(0)', opacity: 1 }))
      ])
    ])
  ]
})
export class PredictionFormComponent implements OnInit {
  today = new Date();
  showForm = false;
  showSuccess = false;
  radius = 120;
  circumference = 2 * Math.PI * this.radius;

  request: PredictionRequest = {
    HighBP: 0,
    HighChol: 1,
    CholCheck: 1,
    BMI: 35,
    Smoker: 1,
    Stroke: 1,
    HeartDiseaseorAttack: 1,
    PhysActivity: 0,
    Fruits: 0,
    Veggies: 0,
    HvyAlcoholConsump: 1,
    AnyHealthcare: 0,
    NoDocbcCost: 1,
    GenHlth: 5,
    MentHlth: 10,
    PhysHlth: 15,
    DiffWalk: 1,
    Sex: 0,
    Age: 60,
    Education: 1,
    Income: 2
  };

  metrics = {
    eaten: {
      value: 0,
      total: 3000,
      unit: 'cal'
    },
    activity: {
      value: 0,
      unit: 'Steps'
    },
    water: {
      value: 0,
      unit: 'GL'
    },
    bloodGlucose: {
      value: 0,
      unit: 'mg/dl'
    },
    heart: {
      value: 0,
      unit: 'bpm'
    }
  };

  prediction: PredictionResponse = {
    prediction: 0,
    classification: '',
    interpretation: ''
  };

  constructor(private predictionService: PredictionService) {}

  ngOnInit() {
    this.initializeMetrics();
  }

  initializeMetrics() {
    this.metrics.eaten.value = 70;
    this.metrics.activity.value = 2032;
    this.metrics.water.value = 4;
    this.metrics.bloodGlucose.value = 136;
    this.metrics.heart.value = 72;
  }

  getFormKeys(): ReadonlyArray<keyof PredictionRequest> {
    return this.formKeys;
  }

  formKeys: ReadonlyArray<keyof PredictionRequest> = [
    'HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker', 'Stroke',
    'HeartDiseaseorAttack', 'PhysActivity', 'Fruits', 'Veggies',
    'HvyAlcoholConsump', 'AnyHealthcare', 'NoDocbcCost', 'GenHlth',
    'MentHlth', 'PhysHlth', 'DiffWalk', 'Sex', 'Age', 'Education', 'Income'
  ];

  getRequestValue(key: keyof PredictionRequest): number {
    return this.request[key];
  }

  setRequestValue(key: keyof PredictionRequest, value: number): void {
    this.request[key] = value;
  }

  onSubmit() {
    if (this.validateForm()) {
      this.predictionService.predict(this.request).subscribe(
        (response: PredictionResponse) => {
          this.prediction = response;
          this.updateMetrics();
          this.showForm = false;
        },
        error => {
          console.error('Prediction error:', error);
        }
      );
    }
  }

  validateForm(): boolean {
    const requiredNonZeroFields: (keyof PredictionRequest)[] = ['Age', 'BMI'];

    for (const [key, value] of Object.entries(this.request)) {
      if (value === undefined || value < 0) {
        return false;
      }

      if (value === 0 && requiredNonZeroFields.includes(key as keyof PredictionRequest)) {
        return false;
      }
    }

    return true;
  }

  updateMetrics() {
    if (this.prediction) {
      this.metrics.bloodGlucose.value = this.request.BMI > 25 ?
        Math.round(120 + this.request.BMI) :
        Math.round(90 + this.request.BMI);

      this.metrics.heart.value = this.request.PhysActivity === 1 ?
        Math.round(65 + Math.random() * 10) :
        Math.round(75 + Math.random() * 15);

      this.metrics.activity.value = this.request.PhysActivity === 1 ?
        Math.round(8000 + Math.random() * 2000) :
        Math.round(2000 + Math.random() * 1000);

      this.metrics.water.value = this.request.PhysActivity === 1 ? 8 : 4;

      this.metrics.eaten.value = Math.round(70 + (this.request.PhysActivity * 10));
    }
  }

  getPredictionScore(): number {
    if (this.prediction) {
      return 100 - Math.round(this.prediction.prediction * 100);
    }
    return 80;
  }

  getDashOffset(): number {
    if (this.prediction) {
      const progress = 1 - this.prediction.prediction;
      return this.circumference - (progress * this.circumference);
    }
    return this.circumference * 0.2;
  }

  getEatenProgress(): string {
    const total = this.metrics.eaten.total;
    const current = (this.metrics.eaten.value / 100) * total;
    const progress = (current / total) * 176;
    return `${progress} 176`;
  }

  getFieldLabel(key: keyof PredictionRequest): string {
    const labels: Record<keyof PredictionRequest, string> = {
      HighBP: 'High Blood Pressure',
      HighChol: 'High Cholesterol',
      CholCheck: 'Cholesterol Check',
      BMI: 'BMI',
      Smoker: 'Smoker',
      Stroke: 'Stroke History',
      HeartDiseaseorAttack: 'Heart Disease/Attack',
      PhysActivity: 'Physical Activity',
      Fruits: 'Fruits Consumption',
      Veggies: 'Vegetables Consumption',
      HvyAlcoholConsump: 'Heavy Alcohol Consumption',
      AnyHealthcare: 'Healthcare Coverage',
      NoDocbcCost: 'Doctor Visit Cost Issues',
      GenHlth: 'General Health',
      MentHlth: 'Mental Health',
      PhysHlth: 'Physical Health',
      DiffWalk: 'Difficulty Walking',
      Sex: 'Sex',
      Age: 'Age',
      Education: 'Education Level',
      Income: 'Income Level'
    };
    return labels[key] || key;
  }
}

Updated Form HTML with Modal and Metrics:

<div class="min-h-screen bg-gray-100">
  <div class="p-4 bg-white shadow-sm">
    <div class="max-w-7xl mx-auto flex justify-between items-center">
      <div class="flex items-center space-x-4">
        <img src="assets/doctor-profile.jpg" alt="Profile" class="w-12 h-12 rounded-full">
        <div>
          <h1 class="text-xl font-semibold">Will Smith</h1>
          <button class="text-sm text-gray-500 hover:text-gray-700">Logout</button>
        </div>
      </div>
      <div class="text-right">
        <div class="text-lg">18°C</div>
        <div class="text-sm text-gray-500">Little Bit Cloudy</div>
        <div class="text-sm text-gray-500">{{today | date:'EEEE, d MMMM'}}</div>
      </div>
    </div>
  </div>

  <div class="max-w-7xl mx-auto p-6">
    <div class="grid grid-cols-3 gap-8">
      <div class="space-y-6">
        <div class="bg-white rounded-xl p-6 shadow-md">
          <h3 class="text-gray-600 mb-4">Eaten</h3>
          <div class="flex items-center">
            <div class="relative w-20 h-20">
              <svg class="w-full h-full transform -rotate-90">
                <circle cx="40" cy="40" r="35" stroke="#e5e7eb" stroke-width="5" fill="none"/>
                <circle cx="40" cy="40" r="35" stroke="#06b6d4" stroke-width="5" fill="none" [attr.stroke-dasharray]="getEatenProgress()"/>
              </svg>
              <div class="absolute inset-0 flex items-center justify-center">
                <span class="text-lg font-semibold">70%</span>
              </div>
            </div>
            <div class="ml-4">
              <p class="text-sm text-gray-500">3000 cal</p>
            </div>
          </div>
        </div>

        <!-- Other Metric Cards... -->
      </div>

      <div class="flex items-center justify-center">
        <div class="relative">
          <svg class="w-80 h-80 transform -rotate-90">
            <circle cx="160" cy="160" r="150" stroke="#e5e7eb" stroke-width="20" fill="none"/>
            <circle cx="160" cy="160" r="150" stroke="#06b6d4" stroke-width="20" fill="none" [attr.stroke-dasharray]="circumference" [attr.stroke-dashoffset]="getDashOffset()"/>
          </svg>
          <div class="absolute inset-0 flex flex-col items-center justify-center">
            <span class="text-7xl font-bold">80</span>
            <span class="text-gray-500">Fitness score today</span>
          </div>
        </div>
      </div>

      <div class="space-y-6">
        <div class="bg-white rounded-xl p-6 shadow-md">
          <h3 class="text-gray-600 mb-4">Blood Glucose</h3>
          <div class="flex items-center mb-4">
            <span class="text-2xl font-bold">136</span>
            <span class="ml-2 text-gray-500">mg/dl</span>
          </div>
        </div>

        <!-- Other Metrics... -->
      </div>
    </div>
  </div>
</div>

Conclusion

This project showcases how Python, Spring Boot, and Angular can work together seamlessly to create a predictive system for healthcare applications. The modular design ensures scalability and flexibility for future enhancements. Tailwind CSS provides a polished UI, making the application user-friendly.


References

Author: Starling Diaz

  1. UCI Machine Learning Repository
  2. Flask Documentation: https://flask.palletsprojects.com/
  3. Spring Boot Documentation: https://spring.io/projects/spring-boot
  4. LinkedIn: https://www.linkedin.com/in/starling-diaz-908225181/
  5. GitHub: https://github.com/NSTLRD/diabetes-prediction-ui
  6. Google Scholar: https://scholar.google.com/citations?view_op=view_citation&hl=es&user=_3EWA1QAAAAJ&sortby=pubdate&citation_for_view=_3EWA1QAAAAJ:n1qY4L4uFdgC

Related Posts

About Us

We are Mentorly, your space for learning and practicing with real industry projects that will allow you to develop problem-solving skills with the best practices. Offering mentorships and real-world challenges to push you and support you in your professional development.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More